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Abstract 
Background: Prostate cancer is the second most common cancer among men worldwide with escalating incidence and 
mortality rates. This study investigated the protective effects of papaya seed, watermelon seed, and clove bud on 
testosterone-DMBA-induced prostate cancer in male Wistar rats.  
Methods: Seventy male Wistar rats were randomly divided into seven groups: normal control, cancer control, 
combination supplementation (papaya seed, watermelon seed and clove bud, individual supplementations of papaya 
seed, watermelon seed, clove bud, and flutamide treatment. Prostate cancer was induced by single dose intraperitoneal 
injection of DMBA 65mg/kg) and subcutaneous testosterone (3mg/kg) continued for 12 weeks. The intervention 
groups received their respective supplementations 2 weeks before induction and continued after the induction. At the 
end of the intervention period, oxidative stress markers, inflammatory markers, and histopathological changes were 
assessed.  
Results: Watermelon seed supplementation provided optimal balanced protection, significantly preserving catalase 
activity (6.87±0.63 vs. 4.67±1.17 µ/ml) and reducing CRP levels (2.70±0.25 vs. 12.47±5.17 mg/L). Clove bud 
supplementation effectively reduced nitric oxide levels (193.92±43.85 vs. 588.35±127.24 µm/mL) and IL-6 (31.47±4.24 
vs. 34.88±4.03 pg/mL). Combination treatment demonstrated complete prostate and liver tissue protection. All dietary 
interventions provided complete hepatoprotection, contrasting with flutamide's hepatotoxicity. COX-2 levels were 
significantly lower in dietary groups (199.04±89.42 to 324.78±17.96 pg/mL) versus flutamide (613.07±201.71 pg/mL). 
Watermelon supplementation achieved complete renoprotection with preserved glomerular architecture.  
Conclusion: Natural dietary supplements demonstrate organ-specific protective effects against prostate cancer with 
superior safety profiles compared to conventional treatment. These findings support their potential as supplementary 
therapeutic strategies for minimizing treatment-associated toxicities while enhancing outcomes. 
 
Keywords: Prostate cancer, testosterone-DMBA, oxidative stress, inflammation, papaya seed, watermelon seed, clove bud, 
dietary supplements. 
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INTRODUCTION 
Prostate cancer poses a major global health challenge, 

with 1460000 new cases and 396,000 deaths reported in 

2022.1 Despite advances in conventional treatments 

including radiotherapy, surgery, and hormone therapy, 

mortality rates remain high, particularly in advanced 

stages where only 31% of patients survive five years with 

the metastatic disease.2 This concerning reality has 

driven research into alternative approaches, particularly 

dietary interventions and natural products that may 

target key pathways involved in prostate cancer 

development. 

 

Prostate cancer development involves multiple 

interconnected mechanisms including hormonal 

imbalances, oxidative stress, chronic inflammation, and 

dysregulated cellular signaling.3,4,5,6,7 Testosterone, while 

essential for normal prostate function, contributes to 

cancer development through its conversion to 

dihydrotestosterone (DHT), which promotes cell 

growth by activating androgen receptor 

pathways.8,9,10,11,12,13 Environmental carcinogens like 

7,12-dimethylbenz[a]anthracene (DMBA) cause DNA 

damage, trigger inflammatory cascades, and accelerate 

malignant transformation.14,15.16 

 

Oxidative stress, characterized by an imbalance between 

reactive oxygen species production and antioxidant 

defences, plays a crucial role in cancer initiation and 

progression.17 In prostate cancer, elevated oxidative 

stress markers correlate with disease advancement, with 

studies showing up to 3-fold increases in lipid 

peroxidation products and significant decreases in 

antioxidant enzymes compared to normal 

tissue.18,19,20,21,22,23 Chronic inflammation also 

contributes significantly, with pro-inflammatory 

cytokines like interleukin-6 and tumour necrosis factor-

alpha creating an environment conducive to tumour 

development.24,25,26 

 

Traditional medicinal plants and their bioactive 

compounds have gained attention for their potential 

cancer-fighting properties.27,28,29,30,31 Three promising 

natural products show particular relevance. Papaya seeds 

contain benzyl isothiocyanate, polyphenols, and 

flavonoids with potent antioxidant, anti-inflammatory, 

and potential anti-androgenic properties. Recent studies 

demonstrate their ability to reduce prostate-specific 

antigen levels in experimental models.32,33,34 Watermelon 

seeds are rich in citrulline, arginine, and phenolic 

compounds with documented antioxidant and anti-

inflammatory effects, capable of reducing inflammatory 

markers in various models.35,36,37 Cloves contain high 

levels of eugenol and possess exceptional free radical 

scavenging abilities and significant anti-inflammatory 

properties. Studies show they can inhibit NF-κB 

signalling pathways and reduce pro-inflammatory 

cytokine production.38,39,40,41 

 

Despite individual documented benefits, the combined 

effects of these natural products on prostate cancer 

remain unexplored. This study aims to investigate the 

protective effects of the supplements of papaya seed, 

watermelon seed, and clove bud on oxidative stress 

parameters, inflammatory markers, and tissue changes in 

testosterone-DMBA induced prostate cancer in male 

rats, potentially identifying novel therapeutic approaches 

for cancer prevention and management. 

 

MATERIALS AND METHODS 
Chemicals/Reagents 

All chemicals and reagents used in this study were of 

analytical or higher grade. All standards and calibrators 

were prepared according to manufacturers' instructions. 

All reagents were stored as recommended by the 

manufacturers, and their stability was verified prior to 

use. 

 

Testosterone propionate (≥99% purity, CAS 57-85-2), 

7,12-Dimethylbenz[a]anthracene (DMBA) (≥95% 

purity, CAS 57-97-6), Testosterone (≥98% purity, CAS 

58-22-0), Flutamide (≥98% purity, CAS 13311-84-7), 

and Carboxymethylcellulose (pharmaceutical grade, 

CAS 9004-32-4) were all obtained from Beijing Solarbio 

Science & Technology Co., Ltd. (Tongzhou Dist, 

Beijing, China). Corn oil (pharmaceutical grade, C8267) 

used as a vehicle for testosterone and DMBA 

administration was obtained from Sigma-Aldrich (St. 

Louis, MO, USA).  

 

Collection of plant material and identification 

Fresh samples of papaya fruits, watermelon fruits, and 

clove buds were obtained from a local market in Dutsin-

Ma, Katsina State, Nigeria (12.4672° N, 7.4947° E) in 

July 2024. The specimens were identified and 

authenticated by a botanist at the Federal University 

Dutsin-Ma's Plant Biology Department Herbarium, and 

voucher specimens were deposited with accession 

numbers FUDMA/PSB/00004 (papaya), 
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FUDMA/PSB/00118 (watermelon), and 

FUDMA/PSB/00087 (clove). The papaya and 

watermelon fruits were processed by washing, 

dissecting, and extracting the seeds. The seeds, along 

with the clove buds, underwent separate cleaning and 

drying procedures. They were then dried for 72 hours in 

a well-ventilated area, with frequent stirring to ensure 

uniform drying. After drying, the seeds were ground into 

fine powders using a laboratory-grade blender and 

sieved to achieve uniform particle size. The resulting 

powders were stored at room temperature for further 

analysis. 

 

Feed formulation 

A standardized rodent diet was formulated by mixing the 

following ingredients in specific proportions: corn starch 

(554.5 g/kg), soya bean meal (SBM) (320 g/kg), 

methionine (2.5 g/kg), vitamin and mineral premix (2.5 

g/kg), salt (2.5 g/kg), cellulose (45 g/kg), palm oil (60 

g/kg), and bone meal (12.5 g/kg). The ingredients were 

thoroughly blended to create a homogeneous and 

nutritionally balanced diet that meets established rodent 

nutritional requirements.42 

 

Diet supplementation 

The combined supplement diet was made by blending 

98g of standard rodent diet with 2g of a custom mixture 

comprising papaya seed powder, watermelon seed 

powder, and clove powder in a 4:4:2 ratios, aiming to 

optimize their combined benefits and mitigate potential 

risks. The diet formulation was refined to balance 

nutritional and pharmacological properties, prioritizing 

animal welfare. The choice of 4g for papaya and 

watermelon seeds versus 2g for clove bud in the 

combined custom supplement was deliberate, as clove 

bud is known for its potent bioactive properties, 

necessitating a lower concentration to avoid adverse 

effects. The concentrations and ratios used in this study 

were selected based on preliminary assessment and 

represent an exploratory investigation to establish 

baseline effects before conducting comprehensive dose-

response studies. 

 

Also, dedicated supplement diets from each plant were 

made by blending 96g of standard rodent diet with 4g 

(4%) of seed powder in cases of papaya and watermelon; 

and 98g of standard rodent diet with 2g (2%) of bud 

powder in case of cloves. 

 

Experimental animals 

Seventy male Wistar rats, aged 8-10 weeks, were 

obtained from the Ebonyi State University's 

Department of Biological Sciences Animal House. Upon 

arrival, the rats were housed in standard plastic cages and 

acclimated to laboratory conditions (25°C, 50% 

humidity) for two weeks. During this period, they had 

unrestricted access to standard rodent chow and water, 

ensuring their optimal health and well-being before the 

experiment. 

 

Ethical Clearance 

This study was conducted in accordance with 

international ethical standards for animal 

experimentation and received approval from the Animal 

Care and Use Research Ethics Committee (ACUREC) 

at Bayero University, Kano, with assigned animal use 

protocol number BUK/ACUREC/CAP/PG46 

 

 

Experimental design 

After a two-week acclimatization period, 70 male Wistar 

rats were randomly assigned to seven groups (n=10) 

with similar average weights. The groups were as 

follows: 

 

Grouping of experimental animals 

Group 1: Normal control (no cancer, fed normal rodent 

diet) 

Group 2: Cancer-Induced animals fed standard rodent 

diet (negative control) 

Group 3: Cancer-Induced animals fed a combination 

supplement containing 98g standard rodent diet and a 2g 

blend of papaya seed powder, watermelon seed powder 

and clove bud powder in a 4:4:2 ratio  

Group 4: Cancer-Induced animals fed a supplement 

containing 96g standard rodent diet and 4g papaya seed 

powder 

Group 5: Cancer-Induced animals fed a supplement 

containing 96g standard rodent diet and 4g watermelon 

seed powder 

Group 6: Cancer-Induced animals fed a supplement 

containing 98g standard rodent diet and 2g clove powder 

Group 7: Cancer-Induced animals treated with 10mg of 

Flutamide 

 

Induction protocol 

Following a two-week acclimatization period, animals 

received respective supplements for 2 weeks before 
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induction, which continued after induction until the end 

of the study period. The induction protocol was adapted 

from previous studies.43,44 The protocol consisted of a 

series of administrations: 

1. Flutamide (25 mg/kg) was administered daily via 

gavage for 2 weeks. 

2. Twenty-four hours after initiating flutamide 

treatment, testosterone propionate (100 mg/kg) was 

injected subcutaneously. 

3. Fifty-six hours later, an intraperitoneal injection of 

7,12-Dimethylbenz(a)anthracene (DMBA) (65 mg/kg) 

was administered. 

4. One week after DMBA induction, testosterone (3 

mg/kg) was administered subcutaneously every 48 hours 

for 10 weeks. 

Collection and preparation of sera samples 

At the end of the 16-week study, the rats were weighed 

and humanely euthanized by chloroform inhalation. 

Blood samples were then collected from each rat via 

cardiac puncture and placed in red-top tubes to obtain 

serum. Following clot formation, the samples were 

centrifuged (5430R, Eppendorf AG, Hamburg, 

Germany, 250 rpm, 10 minutes) to separate the serum. 

 

Estimation of oxidative stress markers 

Estimation of Superoxide Dismutase (SOD) 

This was determined in accordance with the protocols 

outlined in the Superoxide dismutase (SOD) assay kit 

(19160, Sigma-Aldrich, St. Louis, MO, USA). Serum 

samples collected via cardiac puncture were analysed for 

SOD activity. The reaction mixture contained 2.5 ml of 

0.05 M carbonate buffer (pH 10.2), 0.3 mM EDTA, and 

0.2 ml of 0.3 mM epinephrine, with 0.1 ml serum added. 

Monitoring at 480 nm for 5 minutes (30-second 

intervals) using a Shimadzu UV-1800 

spectrophotometer showed SOD inhibited epinephrine 

auto-oxidation. Activity was expressed in U/ml serum (1 

unit = 50% inhibition). Samples were analysed in 

triplicate; results were mean values. The SOD activity 

was calculated based on the percentage inhibition of 

epinephrine auto-oxidation, using the formula:  

% 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝛥𝐴ₒ −  𝛥𝐴₁

𝛥𝐴ₒ 
𝑋 100 

Where:  

ΔAₒ is the change in absorbance of the reference 

mixture per unit time. 

ΔA₁ is the change in absorbance of the sample mixture 

per unit time. 

 

Estimation of Reduced Glutathione (GSH) 

This was determined in accordance with the protocols 

outlined in the reduced glutathione (GSH) assay kit 

(CS0260, Sigma-Aldrich, St. Louis, MO, USA). A 

protein-free filtrate was prepared by mixing 0.5 ml serum 

with 2.0 ml of 10% trichloroacetic acid (TCA), vortexed, 

stood for 5 minutes, and centrifuged at 1,200 g for 10 

minutes. For GSH estimation, 0.5 ml supernatant was 

mixed with 2.0 ml of 0.1 M phosphate buffer (pH 7.4) 

and 0.25 ml DTNB solution (40 mg/100 ml). 

Absorbance was measured at 412 nm against a blank 

(using 10% TCA) using a Shimadzu UV-1800 

spectrophotometer. GSH concentration was determined 

via a standard curve (1-10 μg/ml GSH) and expressed as 

μg/ml serum. Analyses were triplicate; results were 

mean values. 

𝐺𝑆𝐻 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (µ𝑔/𝑚𝐿)  

=  𝛥𝐴412/𝑚𝑖𝑛 𝑋 (1

/𝜀) 𝑋 
1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒
 

Where:  

ΔA412/min = Rate of increase in absorbance at 412 nm. 

ε = Extinction coefficient of TNB. The extinction 

coefficient (ε) of TNB is typically 13.6 mM-1 cm-1. 

Sample volume = Volume of the sample used in the 

assay. 

 

Estimation of Malondialdehyde (MDA) 

This was determined in accordance with the protocols 

outlined in the malondialdehyde (MDA) assay kit 

(MAK085, Sigma-Aldrich, St. Louis, MO, USA). Serum 

samples were centrifuged at 250 rpm for 10 minutes 

using an Eppendorf 5430R centrifuge. Proteins were 

precipitated by mixing 0.5 ml serum with 2.5 ml of 10% 

TCA, incubated for 15 minutes, and centrifuged at 3,500 

rpm for 10 minutes. 2.0 ml supernatant was mixed with 

1.0 ml of 0.67% TBA in 0.05 M NaOH and incubated at 

95-100°C for 30 minutes for MDA-TBA complex 

formation. Absorbance was measured at 532 nm (A532) 

and 600 nm (A600) using a Shimadzu UV-1800 

spectrophotometer; ΔA = A532 - A600. MDA 

concentration was determined via a standard curve (0.5-

5.0 nmol/ml TEP) and expressed as nmol/ml serum. 

Analyses were triplicate; results were mean values.  

𝑀𝐷𝐴 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝑛𝑚𝑜𝑙/𝑚𝐿)  =  
(𝛥𝐴 𝑥 𝐷𝐹)

(𝜀 𝑥 𝐿)
  

Where: 

ΔA = A532 - A600 
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Dilution factor = (total volume of reaction mixture) / 

(volume of sample) 

ε = extinction coefficient of MDA-TBA complex 

(typically 1.56 x 105 M-1 cm-1) 

L = path length of cuvette (typically 1 cm) 

 

Estimation of Catalase (CAT) 

This was determined in accordance with the protocols 

outlined in the Catalase (CAT) assay kit (CAT100, 

Sigma-Aldrich, St. Louis, MO, USA). Serum collected 

via cardiac puncture was centrifuged at 250 rpm for 10 

minutes using an Eppendorf 5430R centrifuge. Catalase 

activity was assayed by mixing 0.1 ml serum with 0.5 ml 

of 0.2 M H₂O₂ in 0.05 M phosphate buffer (pH 7.0) for 

60 seconds; reaction stopped with 2.0 ml 

dichromate/acetic acid reagent (5% potassium 

dichromate: glacial acetic acid, 1:3). Tubes were heated 

for 10 minutes at boiling water bath; absorbance 

measured at 570 nm using Shimadzu UV-1800 

spectrophotometer. Activity calculated via H₂O₂ 

standard curve, expressed in U/ml serum (1 unit 

decomposes 1 μmol H₂O₂/minute). Analyses triplicate; 

results mean values. 

The rate of decrease in absorbance (ΔA240/min) was 

then calculated from these readings. 

𝐶𝑎𝑡𝑎𝑙𝑎𝑠𝑒 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑈/𝑚𝐿)  

=  (𝛥𝐴240/𝑚𝑖𝑛) 𝑋 (1

/0.0436) 𝑋 
1

𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑖𝑛 𝑚𝐿
 

Where: 0.0436 is the extinction coefficient of H2O2 at 

240 nm. 

 

Estimation of Nitric Oxide (NO) 

This was determined using the Nitric oxide (NO) assay 

kit (23479, Sigma-Aldrich, St. Louis, MO, USA) based 

on Griess reagent. Serum collected via cardiac puncture 

was deproteinized with 10% zinc sulphate, vortexed, and 

centrifuged at 10,000 g for 15 minutes at 4°C. Nitrate 

was converted to nitrite using nitrate reductase (0.2 

U/mL), 5 μM FAD, 0.1 mM NADPH in phosphate 

buffer (pH 7.4) for 1 hour at 37°C. 100 μL processed 

sample was mixed with Griess reagent (1:1 ratio of 1% 

sulphanilamide in 5% phosphoric acid and 0.1% N-(1-

naphthyl) ethylenediamine dihydrochloride) and 

incubated 10 minutes; absorbance measured at 540 nm 

using BioTek microplate reader. NO concentration (as 

nitrite equivalents) calculated via 0-100 μM sodium 

nitrite standard curve, expressed in μmol/ml serum. 

Analyses triplicate; results mean values. 

𝑁𝑂 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝜇𝑚𝑜𝑙/𝑚𝑙)  

=  
𝐴540 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 −  𝐴540 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘

𝐴540 𝑜𝑓 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 −  𝐴540 𝑜𝑓 𝑏𝑙𝑎𝑛𝑘
 𝑋 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝜇𝑚𝑜𝑙

/𝑚𝑙) 

Where: 

A540 = absorbance at 540 nm 

Blank = reagent blank without sample or standard 

Standard = known concentration of sodium nitrite 

(NaNO2) standard 

Sample = test sample containing NO 

 

Estimation of Inflammatory Markers 

Estimation of C-Reactive Protein (CRP) 

The C-reactive protein (CRP) assay was performed using 

a high-sensitivity CRP ELISA kit (RAB1121, Sigma-

Aldrich, St. Louis, MO, USA).  

Estimation of Interleukin-6 (IL-6) 

The Interleukin-6 (IL-6) ELISA kit (R6000B, R&D 

Systems, Minneapolis, MN, USA) was used for this 

study.  

Estimation of Tumour Necrosis Factor-Alpha 

(TNF-α) 

The Tumour Necrosis Factor-alpha (TNF-α) ELISA kit 

(RTA00, R&D Systems, Minneapolis, MN, USA) was 

used.  

Estimation of Cyclooxygenase 1 (COX-1) 

The COX-1 was determined using the Cyclooxygenase-

1 (COX-1) ELISA kit (MyBioSource, San Diego, CA, 

USA).  

Estimation of Cyclooxygenase 2 (COX-2) 

The Cyclooxygenase-2 (COX-2) ELISA kit (Sigma-

Aldrich, St. Louis, MO, USA) was used.  

Estimation of Interleukin-10 (IL-10) 

IL-10 was determined using the Interleukin-10 (IL-10) 

ELISA kit (R1000, R&D Systems, Minneapolis, MN, 

USA).  

 

Histopathological Studies 

Organs of interest, kidney, liver and prostate were 

dissected, washed in ice-cold saline, and processed for 

further analysis. A portion of the tissues was fixed in 

10% neutral buffered formalin fixative solution to 

facilitate histological studies. Following fixation, the 

tissues were embedded in paraffin, and 5 mm thick 

sections were cut and stained with haematoxylin and 

eosin.45 The stained sections were examined under a 

light microscope at a magnification of 400x, and 

photomicrographs were taken to assess microscopic 

changes of pathological importance. 
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Data Analysis 

Data analysis was conducted using Statistical Package for 

Social Sciences (SPSS) software, version 21 (SPSS Inc., 

Chicago, IL, USA). Results are expressed as mean ± 

standard error of the mean (SEM). Duncan's multiple 

comparison test was used to ascertain significant 

variations among group means. The threshold for 

statistical significance was established at p < 0.05. 

 

 

RESULTS 
Table 1: Oxidative Stress Markers of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats Fed Papaya seed, 

Watermelon seed, and Clove Supplemented Diet. 

Group  SOD(U/mL) GSH(µg/mL) MDA (nmol/mL) CAT(µ/mL)       NO (µm/mL) 

1 11.00±1.77a 7.37±0.35 a 316.67±22.05 a 10.60±0.45 a 444.71±102.09 ab 

2 11.87±2.68 a 6.90±1.22 a 370.10±41.75 a 4.67±1.17bc 588.35±127.24a 

3 16.50±4.58 a 7.97±1.73 a 384.17±30.35 a 4.63±0.64bc 429.29±103.63 ab 

4 22.40±5.45 a 8.17±2.44 a 358.60±22.02 a 4.93±1.52bc 454.69±107.63 ab 

5 18.50±5.58 a 7.47±0.55 a 299.27±76.78 a 6.87±0.63b 363.63±175.61ab 

6 10.20±1.99 a 4.30±0.66 a 367.80±17.28 a 3.23±0.23cd 193.92±43.85b 

7 12.40±3.66 a 5.17±1.96 a 259.33±44.36 a 1.43±0.27d 538.98±64.48ab 

 

The result represents the average of three determinants with their Mean ± SEM and statistical significance indicators. 

Groups marked with the same letter (e.g., 'a' or 'b') are not significantly different from each other, while groups marked 

with different letters (e.g., 'a' vs. 'b') are significantly different from each other in terms of oxidative stress. Key: SOD: 

Superoxide dismutase, GSH: Glutathione, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide.  The seven groups 

consisted of the following: normal rats fed a standard diet (Group 1); testosterone-DMBA-induced prostate cancer rats 

fed a standard diet (Group 2); testosterone-DMBA-induced prostate cancer rats fed a diet supplemented with papaya seed, 

watermelon seed, and cloves (Group 3); testosterone-DMBA-induced prostate cancer rats fed a papaya seed-supplemented 

diet (Group 4); testosterone-DMBA-induced prostate cancer rats fed a watermelon seed-supplemented diet (Group 5); 

testosterone-DMBA-induced prostate cancer rats fed a clove-supplemented diet (Group 6); and testosterone-DMBA-

induced prostate cancer rats administered 10 mg/kg flutamide (Group 7). 

 

Table 2. Inflammation and Anti-Inflammation Markers of Testosterone-DMBA-Induced Prostate Cancer in Wistar 

Rats Fed Papaya, Watermelon, and Clove Supplemented Diet

 
 

The result represents the average of three determinants with their Mean ± SEM and statistical significance indicators. 

Groups marked with the same letter (e.g., 'a' or 'b') are not significantly different from each other, while groups marked 

with different letters (e.g., 'a' vs. 'b') are significantly different from each other in terms of inflammation markers. Key: 

CRP: C-reactive protein, IL-6: Interleukin-6, TNF: Tumour necrosis factor; COX-1: Cycloooxegenase 1; COX-2: 

Cyclooxegenase 2; IL-10: Interleukin-10. Tsnihe seven groups consisted of the following: normal rats fed a standard diet 

(Group 1); testosterone-DMBA-induced prostate cancer rats fed a standard diet (Group 2); testosterone-DMBA-induced 

prostate cancer rats fed a diet supplemented with papaya seed, watermelon seed, and cloves (Group 3); testosterone-

DMBA-induced prostate cancer rats fed a papaya seed-supplemented diet (Group 4); testosterone-DMBA-induced 
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prostate cancer rats fed a watermelon seed-supplemented diet (Group 5); testosterone-DMBA-induced prostate cancer 

rats fed a clove-supplemented diet (Group 6); and testosterone-DMBA-induced prostate cancer rats administered 10 

mg/kg flutamide (Group 7). 
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                    4                                                 5                                                6 

 
                  7 

Figure 1: Photomicrograph of Kidney of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats Fed Papaya, 

Watermelon, and Clove Supplemented Diet. H & E Stain (X 250) 

Group 1: normal rats fed a standard diet (Group 1); Group 2: Testosterone-DMBA-induced prostate cancer rats fed a 

standard diet; Group 3: Testosterone-DMBA-induced prostate cancer rats fed a diet supplemented with papaya, 

watermelon, and cloves; Group 4: Testosterone-DMBA-induced prostate cancer rats fed a papaya-supplemented diet; 

Group 5: Testosterone-DMBA-induced prostate cancer rats fed a watermelon-supplemented diet; Group 6: Testosterone-

DMBA-induced prostate cancer rats fed a clove-supplemented diet; Group 7: Testosterone-DMBA-induced prostate 

cancer rats administered 10 mg/kg flutamide (Group 7). Key: GN: Glomerular necrosis; LH: Hyperplasia of inflammatory 

cells; TA: Tubular adhesion; TN: Tubular necrosis; NG: Normal glomerulus; NT: Normal tubules 
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Plate 4.2: Photomicrograph of Liver of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats Fed Papaya, 

Watermelon, and Clove Supplemented Diet. H & E Stain (X 250) 

Group 1: normal rats fed a standard diet (Group 1); Group 2: Testosterone-DMBA-induced prostate cancer rats fed a 

standard diet; Group 3: Testosterone-DMBA-induced prostate cancer rats fed a diet supplemented with papaya, 

watermelon, and cloves; Group 4: Testosterone-DMBA-induced prostate cancer rats fed a papaya-supplemented diet; 

Group 5: Testosterone-DMBA-induced prostate cancer rats fed a watermelon-supplemented diet; Group 6: Testosterone-

DMBA-induced prostate cancer rats fed a clove-supplemented diet; Group 7: Testosterone-DMBA-induced prostate 

cancer rats administered 10 mg/kg flutamide (Group 7). Key: NH: Normal hepatocytes; VCN: Vacoulation and necrosis. 
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Figure 3: Photomicrograph of Prostate of Testosterone-DMBA-Induced Prostate Cancer in Wistar Rats Fed Papaya, 

Watermelon, and Clove Supplemented Diet. H & E Stain (X 250) 

Group 1: normal rats fed a standard diet (Group 1); Group 2: Testosterone-DMBA-induced prostate cancer rats fed a 

standard diet; Group 3: Testosterone-DMBA-induced prostate cancer rats fed a diet supplemented with papaya, 

watermelon, and cloves; Group 4: Testosterone-DMBA-induced prostate cancer rats fed a papaya-supplemented diet; 

Group 5: Testosterone-DMBA-induced prostate cancer rats fed a watermelon-supplemented diet; Group 6: Testosterone-

DMBA-induced prostate cancer rats fed a clove-supplemented diet; Group 7: Testosterone-DMBA-induced prostate 

cancer rats administered 10 mg/kg flutamide (Group 7). Key: EN: Epithelium necrosis; F: Fibrosis; GA: Glandular 

atrophy; GN: Glandular necrosis; LH: Hyperplasia of inflammatory cells; NF: Normal features.
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DISCUSSION 
The study revealed that superoxide dismutase (SOD) 

activity showed no statistically significant differences 

across all experimental groups. However, the numerical 

trends, particularly the elevated SOD levels in Groups 3 

(combination diet group), 4 (papaya seed diet group), 

and 5 (watermelon seed diet group) suggests a potential 

antioxidant-enhancing effect of papaya, watermelon, 

and their combination. These findings align with a study 

showing significant increases in SOD activity in rats 

treated with watermelon seed oil, showing that the 

antioxidant-rich nature of watermelon seed oil, 

abundant in unsaturated fatty acids such as oleic acid, 

presumably facilitated the upregulation of SOD, 

validating its antioxidant efficacy.46 Similarly, another 

study demonstrated that papaya extract significantly 

restored SOD activity in CCl₄-induced oxidative damage 

models, highlighting that the antioxidant rich 

phytochemicals in papaya seeds (phenolics, flavonoids, 

terpenoids) mitigated CCl₄-induced oxidative stress by 

replenishing SOD and other antioxidants.47 The lack of 

statistical significance in our study, despite numerical 

increases, might be due to the relatively short 

intervention period or the complexity of the 

testosterone-DMBA model.  

 

Similar to SOD, reduced glutathione (GSH) levels 

showed no statistically significant differences across all 

groups. However, the numerical data suggests that 

papaya supplementation (Group 4) and the combination 

treatment (Group 3) maintained slightly higher GSH 

levels compared to cancer control (Group 2). 

Interestingly, the clove-supplemented group (Group 6) 

showed the lowest GSH levels, even lower than the 

flutamide treatment group (Group 7). These findings 

contrast with those of another study that reported 

significant GSH elevation with clove extract in radiation-

induced oxidative stress, stating that bioactive chemicals 

found in cloves, including as ferulic acid, rutin, and 

isoquercitrin, enhance glutathione (GSH) synthesis via 

modulating antioxidant pathways (e.g., Nrf2/ARE).48 

Ethanolic extraction concentrates phenolic compounds 

compared to whole plant material and enhances 

bioavailability by pre-dissolving active ingredients. In 

contrast, dried clove powder requires gastrointestinal 

digestion to release bioactives from the plant cell matrix, 

potentially limiting absorption and reducing effective 

concentrations of GSH-modulating compounds. This 

preparation difference likely explains why the previous 

study48 observed significant GSH elevation while our 

study showed more modest effects. Future studies 

should consider standardized clove extract preparations 

to achieve therapeutic concentrations of bioactive 

compounds for optimal antioxidant effects. 

Research demonstrated that papaya peel extract 

significantly increased GSH levels in HepG2 liver cancer 

cells by enhancing antioxidant enzyme activity (SOD, 

CAT, GPx, GR).49 The discrepancy might be related to 

the complex interaction between clove compounds and 

the testosterone-DMBA model.  

 

The malondialdehyde (MDA) levels, indicators of lipid 

peroxidation, showed no statistically significant 

differences across groups. However, the flutamide 

treatment (Group 7) and watermelon supplementation 

(Group 5) showed numerically lower MDA levels 

compared to the cancer control (Group 2). This trend 

aligns with findings from other study, reported that 

lycopene (abundant in watermelon) enhances 

the antioxidant response in prostate cells, countering 

oxidative stress mechanisms like lipid peroxidation.50 

The lack of statistical significance in our study might be 

attributed to the high variability in MDA measurements, 

particularly in Group 5.  

 

Catalase activity demonstrated the most pronounced 

statistically significant differences among all measured 

parameters. The normal control group (Group 1) 

exhibited significantly higher CAT activity compared to 

all treatment groups. Among the treatment groups, 

watermelon supplementation (Group 5) maintained 

significantly higher CAT activity compared to other 

interventions, particularly flutamide (Group 7) and clove 

supplementation (Group 6). These findings corroborate 

a research demonstrating that citrulline and other 

antioxidants (e.g., lycopene and polyphenols) from 

watermelon preserved catalase activity in oxidative stress 

conditions by scavenging reactive oxygen species (ROS) 

in diabetic rats.51 The significant reduction in CAT 

activity in flutamide-treated rats aligns with a study that 

reported similar findings and attributed this to the 

potential pro-oxidant effects of long-term flutamide 

administration.52 The intermediate values for papaya 

seed supplement (Group 4) and combination treatment 

(Group 3) suggest a moderate protective effect, 

consistent with studies demonstrating dose-dependent 

effects of papaya extracts on antioxidant enzymes.49,53  

 

Nitric oxide (NO) levels showed significant differences, 

particularly between clove supplementation (Group 6) 
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and cancer control (Group 2). All other treatments 

demonstrated intermediate effects without statistical 

significance compared to the control groups. This 

significant reduction in NO with clove supplementation 

aligns with findings that reported that eugenol, the 

primary bioactive compound in cloves, blocks the 

activation of NF-κB, a pathway significant for 

inflammation and cancer growth, and hence suppresses 

COX-2, TNF-α, and iNOS.41 Similarly, other findings 

showed that eugenol exhibits anti-inflammatory effects 

by inhibiting iNOS and nitric oxide (NO) production, 

which is mediated through the inhibition of the NF-κB 

and MAPK pathways.54 Also, a study demonstrated that 

eugenol suppresses iNOS expression by inhibiting NF-

κB and AP-1 signalling pathways, which are key 

regulators of iNOS transcription.55 This mechanism was 

observed in macrophages and other inflammatory 

models. Elevated NO levels in cancer control rats 

corroborate with research reporting that Chronic 

inflammation, prevalent in prostate cancer, induces 

iNOS expression, resulting in elevated NO levels that 

suppress androgen receptor (AR) activity.56 This 

facilitates the progression of cancer independent of 

androgens. Similarly, another finding reported that 

chronic inflammation in the prostate generates reactive 

nitrogen species (e.g., NO), contributing to oxidative 

DNA damage and neoplastic transformation.57 The 

relatively high NO levels in the flutamide group contrast 

with some previous findings and potentially related to 

the contradicting effects of androgen deprivation on 

inflammatory processes as described by a previous 

study, men undergoing androgen deprivation (through 

orchidectomy or androgen deprivation therapy (ADT)) 

exhibited improved endothelium-dependent 

vasodilation, associated with elevated nitric oxide 

bioavailability.58 This systemic elevation of NO contrasts 

with localised pro-tumour effects observed in the 

prostate. Similarly, findings from another study showed 

that administration of testosterone in rats resulted in 

elevated levels of nitric oxide and associated enzymes, 

establishing a pro-inflammatory "feed-forward" 

mechanism that enhances the progression of prostate 

carcinogenesis.59 ADT reduces androgen-driven 

proliferation; however, it may not effectively suppress, 

and could potentially enhance, inflammation-driven NO 

production, thereby promoting castration-resistant 

prostate cancer (CRPC) progression. 

 

The data revealed statistically significant differences in 

C-reactive protein (CRP) levels among the experimental 

groups. Notably, the combined supplementation group 

(Group 3) showed significantly elevated CRP levels 

compared to the watermelon-supplemented group 

(Group 5). Other groups demonstrated intermediate 

CRP values without statistical significance compared to 

these extremes. The remarkably low CRP level in the 

watermelon-supplemented group aligns with findings 

that reported significant reductions in CRP with 

lycopene supplementation in clinical inflammation 

models.60 This anti-inflammatory effect may be 

attributed to lycopene's ability to suppress NF-κB 

signalling pathways, as demonstrated by a mechanistic 

study, showing that lycopene inhibits the enzyme IκB 

kinase beta (IKKβ), suppressing NF-κB signalling, 

thereby reducing cell proliferation.61 The unexpectedly 

high CRP in the combination treatment contradicts the 

anticipated additive anti-inflammatory effects and 

suggests potential antagonistic interactions between 

bioactive compounds when administered together.  

 

Interleukin-6 (IL-6) levels showed significant 

differences, particularly between the combination 

treatment (Group 3) and clove supplementation (Group 

6). The clove-supplemented group exhibited the lowest 

IL-6 levels among all groups, suggesting potent anti-

inflammatory effects. This finding corroborates recent 

work demonstrating that eugenol from cloves 

significantly suppressed IL-6 production in prostate 

cancer cell lines through inhibition of STAT3 

phosphorylation.54 The relatively elevated IL-6 in the 

combination treatment, potentially due to adverse 

interactions in specific contexts (e.g., high doses, specific 

populations).  

 

Tumour necrosis factor (TNF) levels exhibited the most 

dramatic differences among all measured inflammatory 

markers. The combination treatment group (Group 3) 

showed significantly higher TNF levels compared to all 

other groups, which exhibited relatively similar values. 

This unexpected elevation in TNF with the combination 

treatment contradicts findings from individual 

supplementation studies. For instance, a study 

demonstrated significant TNF suppression with 

watermelon extract,36 while another study reported 

similar effects with papaya leaf extract, by inhibition of 

NF-κB and MAPK pathways (ERK1/2, JNK, p38), 

which regulate TNF-α production.62 Similarly, another 
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research highlighted that clove water extract inhibited 

TNF-α production in lipopolysaccharide-stimulated 

cells and mouse peritoneal macrophages by blocking 

NF-κB nuclear translocation and MAPK signalling.63 

The synergistic increase in TNF with combined 

supplementation suggests that certain phytochemical 

combinations may trigger complex immunomodulatory 

responses that differ substantially from their individual 

effects potentially due to dose, bioavailability, or unique 

molecular interactions. 

 

Cyclooxygenase-1 (COX-1) levels demonstrated 

significant variations across groups. The flutamide 

treatment group (Group 7) maintained the highest 

COX-1 levels, significantly different from watermelon 

(Group 5) and clove supplementation (Group 6). The 

combination treatment (Group 3) showed intermediate 

effects. The significantly reduced COX-1 levels with 

watermelon supplementation align with findings 

showing that citrulline from watermelon modulates 

COX-1 expression through nitric oxide-dependent 

pathways.64 The preserved COX-1 levels in the 

flutamide group corroborate with a study reporting that 

androgen receptor antagonists preferentially target 

COX-2 rather than COX-1,65 potentially explaining the 

differential effects observed between these two 

cyclooxygenases in our study.  

The significantly lower COX-2 levels in all dietary 

intervention groups compared to flutamide treatment 

suggest potent COX-2 inhibitory effects of the 

phytochemicals present in papaya, watermelon, and 

cloves. This aligns with findings from multiple studies, 

that identified specific flavonoids in papaya with 

selective COX-2 inhibitory properties,49 and a review 

demonstrated that eugenol in clove inhibits COX-2 gene 

expression by blocking NF-κB signalling.66 The elevated 

COX-2 in the flutamide group, despite its therapeutic 

efficacy, suggests potential compensatory inflammatory 

responses, a phenomenon also reported in a 

comprehensive analysis of inflammatory side effects 

associated with androgen deprivation therapies67 and in 

a clinical study, demonstrating that COX-2 

overexpression may reflect unresolved inflammation 

due to androgen deprivation, which long-term ADT 

(LTAD) could mitigate.68  

 

Interestingly, IL-10, an anti-inflammatory cytokine, 

showed no statistically significant differences across all 

experimental groups. However, numerical trends 

suggest slightly elevated IL-10 levels in the flutamide 

(Group 7), papaya (Group 4), and normal control 

(Group 1) groups compared to others. The lack of 

significant modulation in IL-10 levels across 

intervention groups contrasts with several in vitro 

studies, such as those which reported significant IL-10 

induction with various phytochemicals present in the 

supplements tested.69,70 This discrepancy might be 

related to the complex in vivo environment and the 

specific testosterone-DMBA model used, which could 

potentially override certain immunomodulatory 

pathways. A study similarly reported minimal IL-10 

modulation in their In-vivo cancer model despite 

significant effects in corresponding in vitro systems, 

suggesting context-dependent immunomodulatory 

responses.71 

 

The watermelon group, which demonstrated the most 

balanced antioxidant profile with preserved catalase 

activity and moderate SOD induction, along with 

significantly reduced CRP and COX-1 levels, exhibited 

complete renoprotection histologically. This strong 

correlation supports the mechanistic link between 

oxidative stress, inflammation, and structural renal 

damage proposed in some comprehensive reviews.72,73 

Similarly, the clove-supplemented group showed 

significant reductions in both nitric oxide and IL-6 in 

previous analyses, correlating with the absence of 

structural damage despite mild inflammatory infiltrates 

observed histologically. This relationship was previously 

highlighted by a study, that demonstrated that selective 

inflammatory pathway modulation can preserve tissue 

architecture even in the presence of mild residual 

inflammation.74 The incomplete protection observed in 

the papaya and combination groups despite some 

improvements in oxidative stress markers suggests that 

threshold effects may exist, requiring more substantial 

modulation of specific pathways to achieve complete 

renoprotection. This concept of threshold-dependent 

tissue protection was similarly proposed in a dose-

response analysis of phytochemical interventions in 

renal injury models.75 While watermelon 

supplementation demonstrated complete protection in 

both hepatic and renal tissues, papaya and clove 

supplementation exhibited organ-specific efficacy, 

providing complete hepatoprotection but only partial 

renoprotection. This differential tissue response might 

reflect organ-specific vulnerability to testosterone-

DMBA-induced damage, differential bioaccumulation 
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of protective compounds, or tissue-specific activation of 

protective pathways.  

 

The complete hepatoprotection observed with the 

combination treatment, despite showing only partial 

renoprotection, further highlights these organ-specific 

responses. Some studies reported similar organ-specific 

protective profiles with phytochemical interventions and 

attributed these to differences in tissue perfusion, 

metabolic activity, and expression of specific receptors 

and transporters across organ systems.76,77,78 Notably, 

the flutamide treatment exhibited significant toxicity in 

both hepatic and renal tissues, revealing the substantial 

adverse effect profile of conventional pharmacological 

approaches despite their established therapeutic efficacy. 

This observation supports the growing interest in 

complementary phytochemical interventions to mitigate 

treatment-associated toxicities while potentially 

enhancing therapeutic outcomes, as reviewed 

comprehensively in a study.79 The complete 

hepatoprotection observed with dietary interventions 

correlates with their previously reported effects on 

oxidative stress and inflammatory markers. The 

watermelon group, which demonstrated the most 

balanced antioxidant profile and significant anti-

inflammatory effects, exhibited complete protection in 

both hepatic and renal tissues.  

 

The clove-supplemented group, which showed 

significant reductions in nitric oxide and IL-6, 

demonstrated complete hepatoprotection despite partial 

renoprotection. However, the combination treatment, 

which showed paradoxical increases in certain 

inflammatory markers like TNF, still provided complete 

hepatoprotection. This observation suggests that the 

liver might possess superior resilience against 

inflammatory damage compared to the kidneys, 

potentially related to its robust regenerative capacity and 

extensive detoxification systems. This theory is 

supported by studies, demonstrating that the liver 

maintains structural integrity despite elevated 

inflammatory markers in various experimental models 

through balanced pro-/anti-inflammatory signalling, 

immune modulation and regenerative responses and 

compensatory extracellular matrix (ECM) dynamics in 

early injury phases.80,81 

 

An analysis of prostatic outcomes among therapeutic 

groups indicates a hierarchy of effectiveness. The 

combination supplementation and flutamide groups 

demonstrated complete protection, the papaya and 

watermelon groups showed substantial but incomplete 

protection, and the clove group exhibited limited 

protection. This pattern differs from the previously 

observed hepatic outcomes, where all dietary 

interventions provided complete protection, and renal 

outcomes, where only watermelon demonstrated 

complete protection. This differential efficacy across 

organ systems suggests complex interactions between 

the interventions and tissue-specific pathophysiological 

processes as with the liver histology. The combination 

supplementation group demonstrated equivalent 

prostatic protection to flutamide but without the 

significant hepatotoxicity and nephrotoxicity associated 

with the pharmaceutical intervention. This observation 

suggests a potentially superior therapeutic profile for the 

phytochemical combination, providing target organ 

efficacy while sparing non-target organs from toxicity. 

This finding supports the increasing interest in 

phytochemical interventions as adjunctive or alternative 

methods to traditional cancer treatments, as thoroughly 

examined by a previous study.82  

 

These prostatic histopathological observations with 

previously discussed oxidative stress and inflammatory 

markers reveals interesting correlations. The 

combination treatment group, which showed 

paradoxical increases in certain inflammatory markers 

like TNF but balanced effects on oxidative stress 

parameters, demonstrated complete prostatic 

protection, suggesting that local tissue effects may not 

directly correlate with systemic biomarkers. The 

watermelon group, which demonstrated the most 

balanced antioxidant profile and significant anti-

inflammatory effects systemically, exhibited substantial 

but incomplete prostatic protection. This partial 

discordance between systemic biomarkers and target 

organ outcomes suggests complex relationships between 

circulating mediators and tissue pathophysiology. The 

clove-supplemented group, which showed significant 

reductions in nitric oxide and IL-6 systemically, 

demonstrated limited prostatic protection also reveals 

the complex relationship between systemic biomarkers 

and organ-specific outcomes, potentially reflecting 

differences in tissue penetration, target expression, or 

the relevance of specific inflammatory pathways to 

prostatic pathophysiology. 
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Strengths and limitations of the study 

This study presents a comprehensive investigation of 

natural supplement combinations for prostate cancer 

treatment, demonstrating strong methodological rigor 

through multi-organ assessment, robust experimental 

design, and extensive biomarker evaluation. As the first 

research to examine these three natural products in 

combination, it offers valuable insights into potential 

adjunctive therapies with reduced toxicity profiles and 

organ-specific protective effects. 

However, significant limitations constrain the findings' 

immediate clinical applicability. The animal model 

design, short intervention period, single-dose testing, 

and small sample sizes limit generalizability to human 

patients.  

Despite these constraints, the results suggest promising 

clinical implications for adjunctive cancer therapy, 

prevention strategies for high-risk populations, and 

personalized medicine approaches. The research 

provides a foundation for future human studies, though 

larger-scale trials with extended follow-up periods are 

essential before clinical translation can be considered 

safe and effective. 

 

Research implications 

This study's findings necessitate comprehensive follow-

up research including mechanistic pathway 

investigations, dose optimization studies, and human 

clinical trials to establish safety and efficacy before 

clinical translation. The research also requires 

bioavailability studies and detailed analysis of 

combination therapy interactions to understand the 

underlying mechanisms. From a public health 

standpoint, the results suggest potential integration of 

these natural supplements into dietary guidelines as cost-

effective cancer prevention interventions. This approach 

is particularly valuable for resource-limited settings 

where traditional pharmaceutical treatments may be 

inaccessible, providing evidence-based validation for 

complementary medicine approaches. 

Policy Implications 

The study suggests policy reforms in various domains, 

including health regulatory agencies, national healthcare 

policies, insurance frameworks, food safety, and 

agricultural policies. It also calls for updated standards 

for medicinal plant cultivation, processing, and 

contamination limits. 

 

 

Practice Implications 

Clinical practice transformation necessitates training for 

healthcare providers on evidence-based natural 

supplement use, including patient selection protocols 

and interaction monitoring. Pharmacy practice should 

incorporate specialized natural supplement counselling, 

quality assessment capabilities, and interaction screening 

systems. Primary care providers should integrate 

supplement assessment into routine preventive visits. 

Community health programs should develop accessible 

cancer prevention initiatives. Quality assurance 

protocols are essential for safe implementation. 

 

CONCLUSION 
The study demonstrates that watermelon 

supplementation provides the most comprehensive 

multi-organ protection against testosterone-DMBA 

induced prostate cancer through balanced modulation of 

oxidative stress and inflammatory parameters. 

Importantly, dietary interventions achieved organ 

protection comparable to conventional pharmacological 

treatment (flutamide) without associated toxicity, 

suggesting significant potential as adjunctive therapeutic 

approaches. The findings support the development of 

evidence-based dietary recommendations and natural 

product formulations that could complement 

conventional treatments or serve as preventive strategies 

for high-risk populations, while showing the need for 

further mechanistic studies and clinical translation. 
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