The role of acute and chronic splenic dysfunctions in aetiopathogenesis of anaemia in sickle cell disease: narrative review of hyperhaemolytic implications of autosplenectomy, autoimmunity, infections, and splenomegaly


  • Ahmed SG Department of Haematology, Aminu Kano Teaching Hospital, Kano
  • Ibrahim UA Department of Paediatrics, Aminu Kano Teaching Hospital, Kano, Nigeria.


Sickle cell disease, splenomegaly, sequestration crisis, hypersplenism, autosplenectomy, infection induced haemolysis, autoimmune haemolysis


Background: Splenic dysfunction (SD) in SCD occurs due to one of two ‘diametrically opposed’ anatomical manifestations: splenomegaly or autosplenectomy. Literature on SD-associated hyperhaemolysis is predominated by splenomegaly, acute splenic sequestration crisis (ASSC) and chronic hypersplenism (CH). However, autosplenectomy predisposes to haemolytic erythrocytopathic infections (HECI) and autoimmune haemolysis (AIH). This narrative review highlighted the aetiopathogenesis, management, and prevention of hyperhaemolysis due to both splenomegaly and autosplenectomy in SCD.

Method: Online literature search using terms relevant to splenomegaly, autosplenectomy, and hyperhaemolysis in SCD. Only articles that examined aetiopathogenesis, management, and/or prevention of hyperhaemolysis due to SD vis-à-vis sequestration, hypersplenism, immune-suppression, infections, and autoimmunity in SCD were selected.

Findings: Literature search revealed three major categories of SD-associated hyperhaemolysis in SCD: 1) Autosplenectomy-associated impaired immune-response, leading to HECI; 2) Autosplenectomy-associated impaired immune-tolerance, leading to AIH; 3) Splenomegaly-associated sequestration, leading to ASSC/CH.

Conclusion: Autosplenectomy and splenomegaly are anatomically mutually exclusive but concordant in hyperhaemolysis in SCD. While autosplenectomy is an ‘indirect’ cause of hyperhaemolysis (HECI/AIH), splenomegaly is a ‘direct’ cause of hyperhaemolysis (ASSC/CH). Transfusion, chemotherapy, and/or immune modulation can treat HECI, AIH, ASSC or CH. Prevention against HECI is achievable through, chemoprophylaxis and immunization. The role of hydroxyurea in ‘preventing and reversing’ autosplenectomy must be considered cautiously by physicians, because hydroxyurea may ‘inadvertently’ cause splenomegaly (ASSC/CH). Surgical splenectomy should only be considered in recurrent ASSC or severe CH, and such patients should be offered peri-operative vaccinations and post-operative chemoprophylaxis.

Sickle cell disease, splenomegaly, sequestration crisis, hypersplenism, autosplenectomy, infection induced haemolysis, autoimmune haemolysis.


Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. Baillieres Clin Haematol 1993; 6:215-262. doi:10.1016/S0950-3536(05)80071-X.

Kaul DK, Fabry ME, Nagel RL. The pathophysiology of vascular obstruction in the sickle syndromes. Blood Rev 1996; 10:29-44. Doi:10.1016/S0268-960X(96)90018-1.

Fleming AF, Storey J, Molineaux L, Iroko EA, Attai ED. Abnormal haemoglobins in the Sudan savanna of Nigeria. I. Prevalence of haemoglobins and relationships between sickle cell trait, malaria and survival. Ann Trop Med Parasitol 1979; 73:161-172. Doi:10.1080/00034983.1979.11687243.

Elguero E, Délicat-Loembet LM, Rougeron V, Arnathau C, Roche B, Becquart P, et al. Malaria continues to select for sickle cell trait in Central Africa. Proc Natl Acad Sci 2015; 112:7051-7054. Doi:10.1073/pnas.1505665112.

Olatunji PO. Malaria and the sickle gene: polymorphism balanced in favour of eradication. Ann Health Res 2018; 4:88-96.

Gong L, Parikh S, Rosenthal PJ, Greenhouse B. Biochemical and immunological mechanisms by which sickle cell trait protects against malaria. Malar J 2013; 12:317-317. Doi:10.1186/1475-2875-12-317.

Loggetto SR. Sickle cell anemia: clinical diversity and beta S-globin haplotypes. Rev Bras Hematol Hemoter 2013; 35:155-157. Doi:10.5581/1516-8484.20130048.

Ahmed SG, Ibrahim UA. Haemoglobin-S in sickle cell trait with papillary necrosis. Br J Haematol 2006; 135:415-416. Doi:10.1111/j.1365-2141.2006.06318.x.

Barbedo MM, McCurdy PR. Red cell life span in sickle cell trait. Acta Haematol 1974; 51:339-343. Doi:10.1159/000208316.

Fernando C, Mendis S, Upasena AP, Costa YJ, Williams HS, Moratuwagama D. Splenic syndrome in a young man at high altitude with undetected sickle cell trait. J Patient Exp 2018; 5:153-155.

Kasi PM, Patnaik MM, Peethambaram PP. Safety of pegfilgrastim (neulasta) in patients with sickle cell trait/anemia. Case Rep Hematol 2013; 2013:146938.

Ahmed SG, Ibrahim UA. A compendium of pathophysiologic basis of etiologic risk factors for painful vaso-occlusive crisis in sickle cell disease. Niger J Basic Clin Sci 2017; 14:57-77. Doi: 10.4103/njbcs.njbcs_11_17.

Platt OS, Brambilla DJ, Rosse WF, Milner PF, Castro O, Steinberg MH, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994; 330:1639-1644.

Goodman SR. The role of the membrane skeleton in formation of the irreversibly sickled cell: A review. Cell Mol Biol Lett 1996; 1:105-117.

McCurdy PR, Sherman AS. Irreversibly sickled cells and red cell survival in sickle cell anemia: a study with both DF32P and 51CR. Am J Med 1978;64:253-258. Doi:10.1016/0002-9343(78)90053-0.

Hillman RS, Finch CA. Erythropoiesis: normal and abnormal. Semin Hematol 1967; 4:327-336.

Ware RE, de Montalembert M, Tshilolo L, Abboud MR. Sickle cell disease. Lancet 2017; 390:311–23.

Ansari J, Gavins FNE. Ischemia-reperfusion injury in sickle cell disease: From basics to therapeutics. Am J Pathol 2019; 189:706-718. Doi: 10.1016/j.ajpath.2018.12.012.

Adebiyi M. Biological clocks, inflammation, and multiorgan damage in sickle cell disease (2018). The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences Dissertations and Theses. 846.

Kato GJ, Gladwin MT, Steinberg MH. Deconstructing sickle cell disease: reappraisal of the role of hemolysis in the development of clinical sub-phenotypes. Blood Rev 2007; 21:37-47.

Hebbel RP, Belcher JD, Vercellotti GM. The multifaceted role of ischemia/reperfusion in sickle cell anemia. J Clin Invest 2020; 130:1062-1072. Doi:10.1172/JCI133639.

Vichinsky E. Chronic organ failure in adult sickle cell disease. The American Society of Hematology Education Programme Book 2017(1):435-439.

Hassell KL, Eckman JR, Lane PA. Acute multi-organ failure syndrome: a potentially catastrophic complication of severe sickle cell pain episodes. Am J Med 1994; 96:155-162.

Elmariah H, Garrett ME, De Castro LM, Jonassaint JC, Ataga KI, Eckman JR, et al. Factors associated with survival in a contemporary adult sickle cell disease cohort. Am J Hematol 2014; 89:530-535.

Gardner K, Douiri A, Drasar E, Allman M, Mwirigi A, Awogbade M, et al. Survival in adults with sickle cell disease in a high-income setting. Blood 2016; 128:1436-1438.

Babadoko AA, Ibinaye PO, Hassan A, Yusuf R, Ijei IP, Aiyekomogbon J, et al. Autosplenectomy of sickle cell disease in Zaria, Nigeria: an ultrasonographic assessment. Oman Med J 2012; 27:121-123. Doi:10.5001/omj.2012.25.

Brousse V, Buffet P, Rees D. The spleen and sickle cell disease: the sickled spleen. Br J Haematol 2014; 166:165-176. Doi:10.1111/bjh.12950.

Wilson-Okoh DA, Nwauche CA, Ejele OA. Splenic changes in sickle cell anaemia. Niger J Med 2006; 15:20-23.

Kirkineska L, Perifanis V, Vasiliadis T. Functional hyposplenism. Hippokratia 2014; 18:7-11.

Ghosh D, StumhoferJS. The spleen: “epicenter” in malaria infection and immunity. J Leukoc Biol 2021; 110:753-769. Doi:10.1002/JLB.4RI1020-713R.

Bronte V, Pittet MJ, The spleen in local and systemic regulation of immunity. Immunity 2013; 39:806-818. Doi:10.1016/j. immune 2013.10.010

Toly-Ndour C, Rouquette A-M, Obadia S, M’bappe P, Lionnet F, Hagege I, et al. High titers of autoantibodies in patients with sickle cell disease. J Rheumatol 2011; 38:302-309. Doi:10.3899/jrheum.100667.

Quismorio Jr. P, Johnson C. Serum autoantibodies in patients with sickle cell anemia. Am J Med Sci 1984; 287:13-15. Doi:10.1097/00000441-198401000-00003.

Comenzo RL, Malachowski ME, Berkman EM. Clinical correlation of positive direct anti-globulin tests in patients with sickle cell disease. Immunohematology 1992; 8:13-16.

Pearson HA, Spencer RP, Cornelius EA. Functional asplenia in sickle-cell anemia. N Eng J Med 1969; 281:923-926.

Ochocinski D, DalalM, Black LV, Carr S, Lew J, Sullivan K, et al. Life-threatening infectious complications in sickle cell disease: a concise narrative review. Front Pediatr 2020; 8:38. Doi:10.3389/fped.2020.00038.

Berkowitz FE. Hemolysis and infection: Categories and mechanisms of their Interrelationship. Rev Infect Dis 1991; 13:1151-62.

Sato S. Plasmodium-A brief introduction to the parasites causing human malaria and their basic biology. J Physiol Anthropol 2021; 40:1. Doi:10.1186/s40101-020-00251-9.

Odame I. Developing a global agenda for sickle cell disease: Report of an international symposium and workshop in Cotonou, republic of Benin. Am J Prev Med 2010;38: S571-S575.

Ezeonu CM, Adabara NU, Garba SA, Kuta F, Ewa E, Oloruntola PO, et al. The risk of transfusion transmitted malaria and the need for malaria screening of blood donors in Abuja, Nigeria. Afr J Clin Exper Microbiol 2019; 20:195-201.

Ahmed SG, Ibrahim UA, Ibrahim G. Prevalence and clinical significance of malaria parasitemia in donor blood in Maiduguri, Nigeria. Niger J Parasitol 2001; 22:29-34.

KaniKM, Ibrahim Z, Habeeb A, Ibrahim UA, Ahmed SG. Haemoglobin phenotypes and the risk of asymptomatic malaria parasitemia among blood donors in northwest Nigeria: Clinical implications in the practice of tropical transfusion medicine. Afr J Clin Exper Microbiol 2021; 22:179-186.

Ahmed SG, Ibrahim UA. Merits and demerits of sickle cell trait donor blood in tropical transfusion medicine: Are there any indications for specific use of blood donated by carriers of sickle cell trait? Afr Sanguine 2021; 23:49-59.

Venugopal K, Hentzschel F, Valkiūnas G, Marti M. Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nat Rev Microbiol 2020; 18:177-189.

Sumbele IUN, Sama SO, Kimbi HK, Taiwe GS. Malaria, moderate to severe anaemia, and malarial anaemia in children at presentation to hospital in the Mount Cameroon area: A cross-sectional study. Anemia 2016; 2016:5725634. Doi:10.1155/2016/5725634.

Montgomery CP, Hoehn KS, Glikman D. Hyperhemolytic crisis caused by severe P.falciparum malaria in a boy with sickle cell anemia. Crit Care Med 2006;34: A164. Doi:10.1097/00003246-200612002-00569.

Juwah AI, Nlemadim EU, Kaine W. Types of anaemic crises in paediatric patients with sickle cell anaemia seen in Enugu, Nigeria. Arch Dis Child 2004; 89:572-576.

Oniyangi O, Omari AA. Malaria chemoprophylaxis in sickle cell disease. Cochrane Database Syst Rev 2019;11. Doi:10.1002/14651858. CD3489.pub2.

Mangano VD, Perandin F, Tiberti N, Guerriero M, Migliaccio F, Prato M, et al. Risk of transfusion-transmitted malaria: Evaluation of commercial ELISA kits for the detection of anti-Plasmodium antibodies in candidate blood donors. Malar J 2019; 18:17.

Arora NC, Anbalagan L, Pannu AK. Towards eradication of malaria: Is the WHOsRTS,S/AS01 vaccination effective enough? Risk Manag Health Policy 2021; 14:1033-1039.

Drysdale C, Kelleher K. WHO Recommends Ground Breaking Malaria Vaccine for Children at Risk. Geneva: WHO; 2021. Available from: [Accessed June 20, 2023].

Ord RL, Lobo CA. Human babesiosis: Pathogens, prevalence, diagnosis, and treatment. Curr Clin Micro Rpt 2015; 2:173-181.

Fang DC, McCullough J. Transfusion-transmitted Babesia microti. Transfus Med Rev 2016; 30:132-138.

Krause PJ, Gewurz BE, Hill D, Marty FM, Vannier E, Foppa IM, et al. Persistent and relapsing babesiosis in immuno-compromised patients. Clin Infect Dis 2008; 46:370-376.

Inah GB, Ekanem EE. Ultrasonographically determined autosplenectomy rates in Nigerian sicklers. IOSR J Dent Med Sci 2018; 17:61-64.

Karkoska K, Louie J, Appiah-Kubi AO, Wolf L, Rubin L, Rajan S, et al. Transfusion-transmitted babesiosis leading to severe hemolysis in two patients with sickle cell anemia. Pediatr Blood Cancer 2018;65(1):e26734.

Tonnetti L, Young C, Kessler DA, Williamson PC, Reik R, Proctor MC, et al. Transcription-mediated amplification blood donation screening for Babesia. Transfusion 2020;60:317-325.

Al-Nazal HA, Cooper E, Ho MF, Eskandari S, Majam V, Giddam AK, et al. Pre-clinicalevaluation of a whole-parasite vaccine to control human babesiosis. Cell Host Microbe 2021; 29:894-903.e5.

Raoult D. Infections humaines à Bartonella [Bartonella infection in humans]. Presse Med 1999; 28:429-434.

Diniz PP, Velho PE, Pitassi LH, Drummond MR, Lania BG, Barjas-Castro ML, et al. Risk factors for Bartonella species infection in blood donors from southeast Brazil. PLoS Negl Trop Dis 2016;10: e0004509. Doi: 10.1371/journal.pntd.0004509.

Hendrix LR. Contact-dependent hemolytic activity distinct from deforming activity of Bartonella bacilliformis. FEMS Microbiol Lett 2000; 182:119-24. Doi:10.1111/j.1574-6968. 2000.tb08884.x.

Orf K, Cunnington AJ. Infection-related hemolysis and susceptibility to Gram-negative bacterial co-infection. Front Microbiol 2015; 6:666. Doi:10.3389/fmicb.2015.00666.

Velho PE, Ericson ME, Mair D, Gupta K. Sickle cell disease and bartonella spp. infection. Mediterr J Hematol Infect Dis 2012;4:e2012046. Doi:10.4084/MJHID.2012.046.

Schaiblich SB, Moreira SATM, Lacet DFR, Cupolilo SMN, Grunewald STF. Cat scratch disease in a child with sickle cell anemia. Residência Pediátrica 2016; 6:145-148.

Soares TCB, Isaias GAB, Almeida AR, Drummond MR, da Silva MN, Lania BG et al. Prevalence of Bartonella spp. infection in patients with sickle cell disease. Vector Borne Zoonotic Dis 2020; 20:509-512. Doi:10.1089/vbz.2019.2545.

Łysakowska ME, Brzezińska O, Szybka M,Konieczka M, Moskwa S, Brauncajs M, et al. The seroprevalence of Bartonella spp. in the blood of patients with musculoskeletal complaints and blood donors, Poland: A pilot study. Clin Rheumatol 2019; 38:2691-2698.

Prutsky G, Domecq JP, Mori L, Bebko S, Matzumura M, Sabouni A, et al. Treatment outcomes of human bartonellosis: A systematic review and meta-analysis. Int J Infect Dis 2013;17:e811-e819.

Henriquez-Camacho C, Ventosilla P, Minnick MF, Ruiz J, Maguiña C. Proteins of Bartonella bacilliformis: Candidates for vaccine development. Int J Pept 2015; 2015:702784. Doi:10.1155/2015/702784.

McGaha TL, Chen Y, Ravishankar B, van RooijenN, Karlsson MCI. Marginal zone macrophages suppress innate and adaptive immunity to apoptotic cells in the spleen. Blood 2011;117: 5403-5412. Doi:10.1182/blood-2010-11-320028.

Aliyu M, Zohora F, Saboor-Yaraghi AA. Spleen in innate and adaptive immunity regulation. AIMS Allergy and Immunology 2020; 5:1-17. Doi:10.3934/Allergy.2021001.

Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, et al. On the role of dendritic cells in peripheral T-Cell tolerance and modulation of autoimmunity.J Exp Med 2002; 196: 217-227. Doi:10.1084/jem.20011061.

Kleiner-Baumgarten A, Schlaeffer F, Keynan A. Multiple autoimmune manifestations in splenectomized subject with HLA-B8. Arch Intern Med 1983; 143:1987-1989. Doi:10.1001/archinte.1983.00350100171032.

Balsalobre B, Hernández-Godoy J, Planelles D. Autoantibodies in splenectomized patients as a consequence of abdominal trauma. J Investig Allergol Clin Immunol 1992; 2:91-95.

Patel S, Kramer N, Rosenstein ED. Evolving connective tissue disease influenced by splenectomy: Beneath the sword of Dameshek. J Clin Rheumatol 2010; 16:280-283. DOI:10.1097/RHU.0b013e3181eeb761.

Li-Thiao-Te V, Uettwiller F, Quartier P, Lacaille F, Bader-Meunier B, Brousse V, et al. Coexistent sickle cell anemia and autoimmune disease in eight children: pitfalls and challenges. Pediatr Rheumatol 2018; 16:5. Doi:10.1186/s12969-017-0221-x.

Tang MW, Nur E, van Tuijn CFJ, Biemond BJ. Higher prevalence of autoimmune diseases in patients with sickle cell disease. Blood 2021; 138:982.

Igbineweka N, Darbari DS, DrasarER, Steer S, Thein SL. Increased Prevalence of Autoimmunity and Connective Tissue Diseases in Sickle Cell Disease. J Gen Pract 2016; 4:236. Doi: 10.4172/2329-9126.1000236.

Piccin A,O'Connor-Byrne N,DavesM, LynchK,FarshbafAD,Martin-Loeches I. Autoimmune disease and sickle cell anaemia: 'Intersecting pathways and differential diagnosis'. Bri J Haematol 2022; 197:518-528. Doi:10.1111/bjh.18109.

Vinit C, Guitton C, Benhaim P, Missud F, De Montalembert M, Amor L, et al. Auto-immune and inflammatory diseases in children with sickle cell disease: diagnostic and therapeutic issues. Ann Rheum Dis 2019; 78:1999-1999.

Poutrel S, Boisson C, Nader E, Renoux C, Virot E, Catella J, et al. Clinical severity and blood rheology in patients with sickle cell anaemia and co-existing autoimmune disease Br J Haematol 2023;200:e28-e31. Doi:10.1111/bjh.18624.

Nistala K, Murray KJ. Co-existent sickle cell disease and juvenile rheumatoid arthritis. Two cases with delayed diagnosis and severe destructive arthropathy. J Rheumatol 2001; 28:2125-2128.

Idris AB, Abdulgayoom A, Mudawi E, El Hassan AM, Elamin EM, Lamyaa El Hassan LAM. Coexistence of sickle cell nephropathy and lupus nephritis in a Sudanese child. Saudi J Kidney Dis Transpl 2015; 26:584-588.

Kanodia KV, Vanikar AV, Goplani KR, Gupta SB, Trivedi HL. Sickle cell nephropathy with diffuse proliferative lupus nephritis: a case report. Diagnostic Pathol 2008; 3:9. Doi:10.1186/1746-1596-3-9.

Minocha V, RanaF. Lupus nephritis in a patient with sickle cell disease. Case Rep Hematol 2013; Article ID 907950. Doi:10.1155/2013/907950.

Ercolini AM, Miller SD. The role of infections in autoimmune disease. Clin Exp Immunol 2009; 155:1-15.

Steinman L. Interconnections between tissue injury, intermediary metabolism, autoimmunity, and chronic degeneration. Proc Am Thorac Soc 2006; 3:484-488. Doi:10.1513/pats.200603-061MS.

Motta I, Giannotta J, Ferraresi M, Barbullushi K, Revelli N, Graziadei G, et al. Autoimmune hemolytic anemia as a complication of congenital anemias. a case series and review of the literature. J Clin Med 2021; 10:3439. Doi:10.3390/jcm10153439.

Marques MB, Carr KD, Brumfield CG, Huang ST. Pregnant patient with sickle cell disease and Cefotetan-induced immune hemolysis. Lab Med 2000; 31:541-543.

Khurana M, Raj SS. Drug-induced hemolytic anemia: a fatal complication further under-recognized in sickle cell disease. Open J Blood Dis 2017; 7:79-85. Doi:10.4236/ojbd.2017.73008.

Fertu E, Haaser E, Dieudonné Y, Bauer S, Levy D, Rondeau-Lutz M, et al. Sickle cell disease in adulthood, mycoplasma, cold agglutinins: a report of 2 cases. La Revue de Médecine Interne 2016;37:A187. Doi: 10.1016/j.revmed.2016.10.229.

Inaba H, Geiger TL, Lasater OE, Wang WC. A case of hemoglobinSC disease with cold agglutinin-induced hemolysis. Am J Hematol 2005; 78:37-40. Doi:10.1002/ajh.20244.

Strauss J, Pardo V, Koss MN, Griswold W, McIntosh RM. Nephropathy associated with sickle cell anemia: An autologous immune complex nephritis: I. Studies on nature of glomerular-bound antibody and antigen identification in a patient with sickle cell disease and immune deposit glomerulonephritis. Am J Med 1975; 58:382-387. Doi:10.1016/0002-9343(75)90604-X.

Pardo V, Strauss J, Kramer H, Ozawa T, McIntosh RM. Nephropathy associated with sickle cell anemia: An autologous immune complex nephritis: II. Clinicopathologic study of seven patients. Am J Med 1975; 59:650-659. Doi:10.1016/0002-9343(75)90226-0.

Michel M, Habibi A, Godeau B, Bachir D, Lahary A, Galacteros F, et al. Characteristics and outcome of connective tissue diseases in patients with sickle-cell disease: report of 30 cases. Semin Arthritis Rheum. 2008; 38:228-240.

Chaplin H, Zarkowsky HS. Combined sickle cell disease and autoimmune hemolytic anemia. Arch Intern Med 1981; 141:1091-1093. Doi:10.1001/archinte.1981.00340080127029.

Maniatis A, Bertles JF, Wethers DL. Cold agglutinins and sickle-cell disease. Lancet 1977; 1:50.

Ward PCJ, Smith CM, White JG. An unusual morphologic finding in a case of sickle-cell anemia with inter-current cold agglutinin syndrome. Am J Clin Pathol 1979; 72:479-85.

Bender T, Finn EM, Park C, Carden M. Unexplained hemolysis in a patient withsickle cell disease: DAT’s confusing. Abstract published at Hospital Medicine Meeting 2020. Abstract 1171. Journal of Hospital Medicine.[Accessed June 20, 2023].

Rupani KV, Waksal J, Cytryn L, Naymagon L. Plasmodium falciparum-induced autoimmune hemolytic anemia in a pregnant patient with sickle cell disease. Am J Case Rep 2023;24:e938854. Doi:10.12659/AJCR.938854.

Fuja C, Kothary V, Carll TC, Singh S, Mansfield P, Wool GD. Hyperhemolysis in a patient with sickle cell disease and recent SARS-CoV-2 infection, with complex auto-and alloantibody work-up, successfully treated with tocilizumab. Transfusion 2022;62: 1446-1451. Doi:10.1111/trf.16932.

Sakhalkar VS, Veillon DM, Cotelingam JD, McCaskill DM, Caldito GC, Hawthorne LM. Autoantibody formation in sickle cell disease patients receiving multiple blood transfusions. Blood 2005; 106:3186. Doi:10.1182/blood.V106.11.3186.3186.

Castellino SM, Combs MR, Zimmerman SA, Issitt PD, Ware RE. Erythrocyte autoantibodies in paediatric patients with sickle cell disease receiving transfusion therapy: frequency, characteristics and significance. Bri J Haematol 1999; 104:189-194. Doi:10.1046/j.1365-2141.1999.01127.x.

McNerney ME, Baron BW, Volchenboum SL, Papari M, KeithM, Williams K, et al. Development of warm auto-and allo-antibodies in a 3-year old boy with sickle cell haemoglobinopathy following his first transfusion of a single unit of red blood cells. Blood Transfus 2010; 8:126-128. Doi:10.2450/2009.0105-09.

Walter O, Cougoul P, Maquet J, Bartolucci P, Lapeyre-Mestre M, Lafaurie M, et al. Risk of vaso-occlusive episode after exposure to corticosteroids in patients with sickle cell disease. Blood 2022; 139:3771-3777. Doi:10.1182/blood.2021014473.

Nottage KA, Ware RE, Winter B, Smeltzer M, Wang WC, Hankins JS, et al. Predictors of splenic function preservation in children with sickle cell anaemia treated with hydroxyurea. Eur J Haematol 2014; 93:377-383. Doi:10.1111/ejh.12361.

Claster S, Vichinsky E. First report of reversal of organ dysfunction in sickle cell anemia by the use of hydroxyurea: Splenic regeneration. Blood 1996; 88:1951-1953.

Huang Y, Ananthakrishnan T, Eid JE. Hydroxyurea-induced splenic re-growth in an adult patient with severe hemoglobin SC disease. Am J Hematol 2003; 74:125-126.

Menchaca AD, Style CC, Villella AD, Burdjalov M, Beyene TJ, Minneci PC, et al. Pediatric sickle cell disease patients on hydroxyurea have higher rates of surgical splenectomy. J Surg Res 2023; 283:798-805. Doi: 10.1016/j.jss.2022.11.026.

Conran N, Belcher JD. Inflammation in sickle cell disease. Clin Hemorheol Microcirc. 2018; 68:263-299. Doi:10.3233/CH-189012.

Chen G, Zhang D, Fuchs TA, Manwani D, Wagner DD, Frenette PS. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood 2014; 123:3818-3827.

Recchiuti A, Federti E, Matte A, Mazzi F, Ceolan J, Porreca A, et al. Impaired pro-resolving mechanisms promote abnormal NETosis, fueling autoimmunity in sickle cell disease. Am J Hematol 2023;98:E45–E48. Doi:10.1002/ajh.26797.

Barbu EA, Mendelsohn L, Samsel L, Thein SL. Pro-inflammatory cytokines associate with NETosis during sickle cell vaso-occlusive crises. Cytokine 2020; 127:154933.

Mattè A, Recchiuti A, Federti E, Mazzi F, Ceolan J, Porreca A, et al. Resolvins modulate netosis and autoimmunity in sickle cell disease. Blood 2022; 140:5399-5400. Doi:10.1182/blood-2022-166240.

Matte A, Recchiuti A, Federti E, Koehl B, Mintz T, El Nemer W, et al. Resolution of sickle cell disease-associated inflammation and tissue damage with 17R-resolvin D1. Blood. 2019; 133:252-265. Doi:10.1182/blood-2018-07-865378.

Asnani MR, Williams A, Reid M. Splenic enlargement in adults with homozygous sickle cell

disease: the Jamaican experience, Hematology. 2013; 18:46-49. Doi:10.1179/1607845412Y.0000000036.

Charlotte EE, Nicole AYA, Yolande DP, Line CK, Edgar MML, FouteFNN, et al. Factors associated with splenomegaly amongst patients with sickle cell disease in Cameroon. Open J Pediatr 2022; 12:33-46. Doi:10.4236/ojped.2022.121005.

Tshilolo L, Tomlinson GA, McGann PT, Latham TS, Olupot-Olupot P, Santos B, et al. Splenomegaly in children with sickle cell anemia receiving hydroxyurea in sub-Saharan Africa. Blood 2019; 134:993. Doi:10.1182/blood-2019-129937.

Selcut DN, Celkan T, Civilibal M, Ozbek NO, Elevli M. Coinheritance of sickle cell anaemia and hereditary spherocytosis. Pediatr Blood Cancer 2008; 51:560-563. Doi:10.1002/pbc.21642.

Warkentin TE, Barr RD, Ah MAM, Mohandas N. Recurrent acute splenic sequestration crisis due to interacting genetic defects: Hemoglobin SC disease and hereditary spherocytosis. Blood 1990; 75:266-270.

Risinger M, Christakopoulos GE, Schultz CL, McGann PT, Zhang W, Kalfa TA, Hereditary elliptocytosis-associated alpha spectrin mutation p.L155dup as a modifier of sickle cell disease severity. Pediatr Blood Cancer 2019;66:e27531. Doi:10.1002/pbc.27531.

Adekile AD, Adeodu OO, Odesanmi WO. Persistent gross splenomegaly in Nigerian patients with sicklecell anaemia: Relationship to malaria. Ann Tropical Paed 1988; 8:103-107.

Tubman VN, Makani J. Turf Wars: Exploring splenomegaly in sickle cell disease in malaria-endemic regions. Br J Haematol 2017; 177:938-946. Doi:10.1111/bjh.14592.

Adekile AD, Mckie KM, Adeodu OO, Sulzer AJ, Liu J-S, Mckie VC, et al. Spleen in sickle cell anaemia. Comparative studies of Nigerian and US patients. Am J Hematol 1993; 42:316-321.

Airede AI. Acute splenic sequestration in a five-week-old infant with sickle cell disease. J Pediatr 1992; 120:160. Doi:10.1016/s0022-3476(05)80623-7.

Brousse V, Elie C, Benkerrou M, Odievre M, Lesprit E, Bernaudin F, et al. Acute splenic sequestration crisis in sickle cell disease: Cohort study of 190 paediatric patients. Br J Haematol 2012; 156:643-648.

Emond AM, Collis R, Darvill D, Higgs DR, Maude GH, Serjeant GR. Acute splenic sequestration in homozygous sickle cell disease: Natural history and management. J Pediatr 1985; 107:201-206.

Topley JM, Rogers DW, Stevens MC, Serjeant GR. Acute splenic sequestration and hypersplenism in the first five years in homozygous sickle cell disease. Arch Dis Child 1981; 56:765-769.

Al-Salem AH. The role of splenectomy in patients with sickle cell disease. Ann Saudi Med 1997; 17:316-20.

Sureshkumar S, Nachiappan DS, Anandhi A, Post-splenectomy prophylaxis-changes and challenges in the adherence to standard vaccination guidelines over ten years. Indian J Surg 2021; 83:889-96.

Owusu-Ofori S, Hirst C. Splenectomy versus conservative management for acute sequestration crises in people with sickle cell disease. Cochrane Database Syst Rev 2013;5:CD003425.

Jacob HS. Hypersplenism: mechanisms and management. Bri J Haematol 1974; 27:1-5. Doi:10.1111/j.1365-2141. 1974.tb06768. x.

Pengelly CDR. The influence of splenomegaly on red cell and plasma volume. J Roy Coll Pys 1977; 12:61-66.

Bowdler AJ. Splenic mechanisms in the pathogenesis of anaemia. Postgrad Med J 1965; 41:748-752. Doi:10.1136/pgmj.41.482.748.

Bowdler AJ. Dilution anaemia associated with enlargement of the spleen. Proc R Soc Med 1967; 60:44-47.

Chiabi A, Moyo GK, Ngone I, Kago DAT, Tchouamou A, Obadeyi B. Persistent spleen enlargement in sickle cell disease: An unresolved dilemma. ARC J Pediatr 2019; 6:8-14. Doi:10.20431/2455-5711.0601003.

Al-Salem AH. The role of splenectomy in patients with sickle cell disease. Ann Saudi Med 1997; 17:316-320.




How to Cite

Ahmed, S., & UA, I. (2023). The role of acute and chronic splenic dysfunctions in aetiopathogenesis of anaemia in sickle cell disease: narrative review of hyperhaemolytic implications of autosplenectomy, autoimmunity, infections, and splenomegaly . The Nigerian Health Journal, 23(2), 597–611. Retrieved from